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A dynamic mathematical model has been developed and val-
idated to describe the synthesis of pectate lyases (Pels), the
major virulence factors in Dickeya dadantii. This work focuses
on the simultaneous modeling of the metabolic degradation of
pectin by Pel enzymes and the genetic regulation of pel genes by
2-keto-3-deoxygluconate (KDG), a catabolite product of pectin
that inactivates KdgR, one of the main repressors of pel genes.
This modeling scheme takes into account the fact that the
system is composed of two time-varying compartments: the
extracellular medium, where Pel enzymes cleave pectin into
oligomers, and the bacterial cytoplasm where, after internaliza-
tion, oligomers are converted to KDG. Using the quasi-station-
ary state approximations, the model consists of some nonlinear
differential equations forwhichmost of the parameters could be
estimated from the literature or from independent experiments.
The few remaining unknown parameters were obtained by fit-
ting themodel equations against a set of Pel activity data.Model
predictions were verified by measuring the time courses of bac-
terial growth, Pel production, pel mRNA accumulation, and
pectin consumption under various growth conditions. This
work reveals that pectin is almost totally consumed before the
burst of Pel production. This paradoxical behavior can be inter-
preted as an evolutionary strategy to control the diffusion pro-
cess so that as soon as a small amount of pectin is detected by the
bacteria in its surroundings, it anticipates more pectin to come.
The model also predicts the possibility of bistable steady states
in the presence of constant pectin compounds.

Dickeya dadantii (ex Erwinia chrysanthemi) is a soft rotting
Gram-negative bacterium that attacks a wide range of plant
species, including many crops of economical importance.
These bacteria are found on plant surfaces and in soil where
they may enter the plant via wound sites or through natural
openings. During infection, D. dadantii first colonizes the
intercellular space (apoplast)where they can remain latent until
conditions become favorable for the development of the dis-

ease. Soft rot, the visible symptom, is mainly due to the degra-
dation of pectin present in the plant cell wall. D. dadantii can
utilize pectin as its sole carbon and energy source (Fig. 1). The
depolymerization of this polysaccharide, consisting of �-1,4-
linked galacturonate residues, is accomplished by a variety of
pectinases. Among these pectinases, D. dadantii endo-pectate
lyases (Pels)4 are known to play the major role in the soft rot
disease caused by this bacterial species (1, 2). These enzymes
randomly cleave, by �-elimination, the internal glycosidic link-
ages in pectic polymers, preferentially polygalacturonate
(PGA), de-esterified pectin, or low esterified pectin. They gen-
erate a series of unsaturated oligogalacturonates (UGA). The
end products of pectin degradation by the extracellular endo-
Pels enter the periplasm through the KdgM and KdgN porins
and are subsequently internalized into the cytoplasm via the
two transporter systems: TogT and TogMNAB (3–5). In this
cellular compartment, small oligomers are then degraded into
two types of monomers, galacturonate and 5-keto-4-deoxyur-
onate, which are both converted to 2-keto-3-deoxygluconate
(KDG) (Fig. 1).
Production of the Pels is controlled by a complex regulation

system involving multiple transcriptional regulators that
respond to various stimuli, such as the presence of pectin com-
pounds, cAMP, growth phase, temperature, osmolarity, pH,
and iron concentration (6–13). Among these conditions, the
effect of pectin is predominant (6). The induction of pel gene
expression by pectic compounds involves a derepression. The
interaction of the repressor KdgR with pectin catabolites,
mainly KDG, relieves the binding of this transcriptional regu-
lator to its operators, situated in the vicinity of the promoters of
the controlled genes (14–16).
Attention has been paid recently to the theoretical modeling

of the onset of virulence inD. dadantii (17, 18). From a systems
biology perspective, the process of Pel synthesis is interesting
because it combines metabolic and genetic regulations. Apart
from a few exceptions (19–21), the simultaneous modeling of
metabolic and genetic interactions in the same network is sel-
domperformed because it involves variables that evolve on very
different time scales. In bacteria, the typical response time of a
metabolic pathway can be less than a few seconds, whereas the
response time for protein synthesis is on the order of several
minutes at least. On the other hand, feedback often exists
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between both networks because themetabolic reactions rely on
enzymes encoded by genes whose expression can be regulated
by products of the metabolic pathways. For example, the pro-
duction of the Pel enzymes enables the catabolism of pectin,
leading to the production of KDG, which in turn sequesters one
of the main repressors of pel genes. The first study concerning
Pel synthesis was carried out by Sepulchre et al. (17). This work
made it possible to put together all the information from vari-
ous experiments (each of the experiments concerning, in gen-
eral, only one regulator) in the form of a coherent transcrip-
tional regulatory network. This offers the possibility of
assigning a set of mathematical equations describing the
dynamics of the full network (17). Using this qualitative math-
ematical modeling, new insights have been gained regarding
the infection process. In particular, a hierarchy of the relative
importance of the numerous regulators experimentally studied
has been deduced from the theoretical analysis of the network.
This qualitative analysis highlighted that the minimal, but
essential, subnetwork underlying Pel synthesis is the feedback
loop involving the repressor KdgR and the metabolic aspect of
the network. In another study (18), considering only the iden-
tified subnetwork, the authors showed that, in principle, this
KdgR loop was enough to predict various possible phenomena,
such as bistability, excitability and autonomous oscillations. It
should be noted that the precise dynamical regime here is cru-
cially dependent on the actual values of the parameters (18).
This subnetwork was already thought to be essential by the
biologists, but the modeling served to confirm its importance
(6, 14, 16).
The problemwith the qualitativemodels (17, 18) is the lack of

knowledge concerning the parameters. This shortcoming ham-
pers further exchanges between the theory and the experi-
ments, in particular for predicting the phenomena that could
occur during virulence, so our aim in this work is to achieve a
more quantitative mathematical model of Pel synthesis that
could account for most of the current experimental data
obtained with variable concentrations of PGA, thus validating
or invalidating our current understanding that the key mecha-
nism of the induction of Pel synthesis is associated with the
KdgR positive feedback loop. Until recently, no precise infor-
mation about substrate degradation and the induction of Pel
synthesiswas available. Unexpectedly, we observed fromexper-
iments that PGA is almost totally consumed, whatever the con-
centration used, prior to the induction of Pel synthesis. It was
also observed that, when changing the initial PGA concentra-
tion, the Pel production profile is relatively constant, but the
maximal Pel concentration values that can be reached depend
on this initial amount. Another question arising from the pre-
viousmodeling approach concerns experiments on the dynam-
ics of transcripts of the pel. Our recent experimental results
reflect that the dynamics of transcripts are very fast compared
with that of the proteins, so the decay of Pels induced by its
degradation rate, after reaching their maximum level, is mainly
due to the absence of mRNA production.
The triggering of the synthesis of Pels by the KdgR loop can

be qualitatively understood as follows.When a small amount of
Pels is produced, it induces the degradation of pectin and its
transformation into KDG (Fig. 1 and Fig. 2). The KDG subse-

quently causes the inactivation of KdgR, leading to a complete
removal of the action of KdgR on pel genes. To develop a quan-
titative model, the following aspects have now been taken into
account and added to the previously simplified subnetwork
(18): the degradation of KdgR, despite being complexed with
KDG-KdgR, and the compartmentalization of the medium, i.e.
inside and outside the bacteria. In other words, we now take
into account the export of Pel proteins by the Out secretion
system and the import process of oligogalacturonate (UGA)
(Fig. 1). Fig. 2 represents the transcriptional regulatory subnet-
work of pel using the graphical conventions proposed in Ref. 22.

EXPERIMENTAL PROCEDURES

Bacterial Strain and Culture Conditions—D. dadantii 3937
(23) was used for all of the experiments described. The cultures
were grown at 30 °C in M63 minimal salt medium (24) supple-
mented with a carbon source: glucose at 0.2% (w/v) and various
concentrations of PGA, from0.05 to 0.4% (w/v). Liquid cultures
were grown in a shaking incubator (220 r.p.m.).
Enzyme Assays—An assay of pectate lyase was performed on

supernatants of the bacteria cultures or on toluenized cell
extracts. Pectate lyase activity was determined by spectropho-
tometricallymonitoring the degradation of PGA tounsaturated
products that absorb at 230 nm (25). Themolar extinction coef-
ficient of unsaturated oligogalacturonates used was 5200 (i.e. 1
mol/liter gives an absorbance at 230 nm of 5200) (25). Pel activ-
ity is expressed as �mol of unsaturated products liberated per
min and per ml of enzymatic extract. The standard assay mix-
ture consisted of 100mMTris-HCl (pH 8.5), 0.1 mMCaCl2, and
0.5 g of PGA/liter in a total volume of 1 ml. Bacterial concen-
tration was estimated by measuring turbidity at 600 nm, given
that an absorbance at 600 nm (A600) of 1.0 corresponds to 109
bacteria/ml and to 0.47 mg of bacteria (dry weight)/ml (26). In
some cases, particularly to quantify the enzyme activity in a
certain growth medium condition, the Pel assays were per-
formed in M63 minimal medium (pH 7.0) supplemented with
CaCl2 and PGA, as above.
Monitoring PGA Degradation during Growth of the Bacteria—

An indirect strategy was used to follow PGA degradation.
Briefly, bacteria were grown in liquid M63 medium containing
glucose (0.2% w/v) and PGA (0.01–0.4% w/v), and 10-ml sam-
ples were taken every hour. The cells were harvested by a cen-
trifugation of 5 min at 6,000 � g, and then 6 ml of the superna-
tant was taken and submitted to an incubation of 20 min at
95 °C to inactivate the Pels contained in the medium. The
resulting sampleswere used as PGA sources for the preparation
of Pel assay buffers, as described above. Aliquots of the media
taken before inoculation with the bacteria and treated as
described above were used as a reference.
Protein Cellular Concentration and Degradation Rates Mea-

sured by Antibiotic Chase—Overnight cultures were inoculated
into freshM63minimal medium containing glucose (0.2%w/v)
and supplemented, or not, with PGA (0.2% w/v). At the late
exponential phase (A600 � 0.8 for M63 � glucose and A600 � 1
for M63 � glucose � PGA), chloramphenicol was added to a
final concentration of 200 �g/ml from a freshly prepared stock
solution. Samples (1 ml) were removed between 0 and 48 h,
centrifuged, resuspended in an adequate volume of Laemmli
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sample buffer, and boiled for 2–3 min. The samples were sepa-
rated by SDS-PAGE (12% polyacrylamide) and transferred for
20 min onto a nitrocellulose membrane, using a semi-dry blot-
ter. Western blots of the separated proteins were incubated
with a polyclonal anti-KdgR or anti-Pel antibody as the pri-
mary antibody and an anti-rabbit peroxidase-conjugated
antibody (Sigma) as the secondary antibody. The signals
obtained in Western experiments were detected by autora-
diography on Amersham BiosciencesMP film and quantified
using ImageMaster TotalLab version 2.01 software (Amer-
sham Biosciences). The protein concentration in bacteria
cells was determined by densitometric analysis, and then a

comparison of the signals was obtained with a serial dilution
of the purified protein.
RNA Isolation and Quantitative RT-PCR Analysis—Total

RNA was extracted from D. dadantii by the Qiagen RNeasy
mini kit procedure (Qiagen). RNAwas quantified using aNano-
drop spectrophotometer and then checked on a 1% agarose gel
containing 0.5 �g/ml ethidium bromide. The cDNAswere syn-
thesized with 1 �g of RNA using the SuperScriptTM first strand
synthesis system for RT-PCR (Invitrogen), in the presence of 50
ng of random hexamers/�g of RNA. The reaction mixture was
incubated at 25 °C (10min), 42 °C (50min), and 70 °C (15min).
2.5 � 105 copies of Gene Amplifier pAW 109 RNA (Applied

FIGURE 1. Pectin degradation and catabolism in D. dadantii. The upper part of the figure shows the detailed structure of pectin and the action of the different
pectinases. The porins KdgM and KdgN, mediating the entry of unsaturated oligogalacturonate into the periplasm, and the transport systems TogMNAB and
TogT, responsible for the entry of digalacturonate into the cytoplasm of the cells, are indicated. The secretion system of pectinases into the external medium
is indicated (Out secretion system).
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Biosystems) were added to the reverse transcription reaction
and used as a control for retrotranscription efficiency. 0.1–1 �l
of the reaction mixture obtained was used for quantitative
PCRs in a volume of 10 �l, using the LightCyclerR Faststart
DNA Masterplus SYBR Green I kit from Roche Applied Sci-
ence. The real time PCRwas performed in a Roche LightCycler
480. The reactions were performed at 95 °C for 10 min and 35
cycles of 95 °C for 15 s, 55 °C for 15 s, and 72 °C for 20 s. Target
gene expression is defined by the method described by Pfaffl
(27). The rsmA (11) and rpoA genes were selected as the refer-
ence genes for real time RT-PCR for an accurate normalization.
Model Formulation—We examined most of the biochemical

reactions occurring between molecules of the network, repre-
sented in Fig. 2. It is important to note that, in this system, the
enzymatic action of Pels takes place in the extracellular
medium, whereas the transcriptional regulation by KdgR and
its inactivation by KDG occur inside the bacterium (Fig. 1 and
2). To set up the equations, the CellDesigner environment (28)
was used to represent the chemical reactions in the form of an
interaction graph (Fig. 3), from which ordinary differential
equations describing the evolution of the variables are automat-
ically generated using standard mass action laws. The set of
equations obtained is reported in the supplemental material.
Next, the dimension of the system is reduced by considering
that the fast variables entering into the set of equations are at
their equilibrium points. Although this so-called quasi-steady
state approximation is standard inmodeling biochemical kinet-
ics, the identification of the slow variables in molecular net-
works can be difficult in practice becausemost of themolecules
participate, in fact, in both slow and fast dynamics. In our case,
however, this separation is relatively straightforward to operate
by considering slow variables as representing the total concen-
trations of proteins, including the free and all the complexed
forms of those proteins. This procedure enables us to reduce
the kinetic equations to a set of just a few ordinary differential

equations, describing the dynamics of the concentrations of the
(total) proteins Pels and KdgR and of the carbohydrates PGA,
UGA, and KDG. These variables are denoted, respectively, by
(x, y, s, z, andw) in the equations below.Model simplification is
detailed in the supplemental material. As shown on Fig. 1, the
product of PGA degradation consists of UGA, which are
obtained in the extracellular medium, imported into the cells
(3–5), and then transformed into KDG. PGA is a polysaccha-
ride polymer whose enzymatic fragmentation into oligomers is
a multistep process, involving in principle the degradation of
polymers with any intermediate sizes between the longest poly-
mers (size L) and monomers. To model this biochemical com-
plexity, we have considered two types of approaches. On one
hand, we have described a complete set of enzymatic degrada-
tion reactions, starting with a distribution of polymer sizes with
a mean length of 210 and a maximal length L � 280, which
corresponds to the PGA used in the experiments. On the other
hand, to compare the full polymer degradation process with a
minimal model, we have also considered the case of only one
enzymatic reaction, i.e. starting from dimers (L � 2) that are
cleaved intomonomers. As discussed below, experimental data
can be fitted equally well with both types of modelings, so we
will only write the equations of the simplest model in the fol-
lowing. Nevertheless the equations of the more detailed model
are presented in the supplemental material, and the parameter
values obtained with both models are given for comparison in
Table 2. The model equations can be summarized as follows.

dx

dt
� �1� �

1 � �� Kd6

Kd6 � yd
� �1

Km

Km � s
x (Eq. 1)

d y

dt
� �2 � ��2 �

�̇

��y (Eq. 2)

FIGURE 2. Simplified diagram of the regulatory network of Pel-KdgR-coupled model of the bacterium D. dadantii. The action of KdgR on the pel genes
are from data reported by Nasser et al. (16).
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ds

dt
� ��kcatx

s

Km � s
(Eq. 3)

dz

dt
� 2�kcatx

s

Km � s
� 	�z (Eq. 4)

dw

dt
� 	�1 � �� z � �k5 �

�̇

��w (Eq. 5)

d�

dt
� 
��1 �

�

�s
� (Eq. 6)

y � 2yd�1 �
w2

Kd3

2 � (Eq. 7)

In these equations the variable x represents the concentration
of Pel enzymes. However, for comparing the results of numer-
ical simulations with the experimental data, it is customary to
show instead of x the quantity kcatx, called the “enzymatic activ-
ity,” which is expressed in units of mmol�min�1. Thus, this is
the variable that will be drawn on the figures presented below.
The variable yd represents the concentration of free dimer
KdgR2. The variable s stands for the concentration of the sub-
strate PGA, whereas z is the end product of degradation of s,
corresponding here to the concentration ofmonomers that will
be subsequently transformed into KDG (w). In reality the end
product of degradation of PGA by the Pels are dimers (unsat-
urated digalacturonates) that are transported into the cyto-
plasm where enzymes other than Pels perform the monomer-
ization reactions (Fig. 1). To simplify these steps, we model the
complete depolymerization of PGA in the external medium.
Then the importation of monomers into the cytoplasm is
described at once by the negative term indicating a consump-
tion in Equation 4. Let us notice that this termmust be propor-

tional to the number of cells in the medium. The variable w
represents the KDG concentration, whose decay is mainly due
to the phosphorylation of KDG. Finally the variable � is the
bacterial volume fraction whose growth is governed by a logis-
tic equation (29), in which 
 is the bacterial growth rate, and �s
is the maximum bacterial volume fraction. The notation �̇ in
Equation 2 denotes the time derivative of �. Let us notice that
the bacteria growth depends on the presence of two substrates,
PGA and glucose. In this study, the glucose is maintained con-
stant in each experiment, and the effect of varying PGA sub-
strate on the Pel dynamics is studied. The dependence of the
parameters of the bacteria growth (as shown in the
supplemental material) on the initial amount of PGA substrate
(s0) is obtained to be linear and is given by the following.


 � 
0 � as0 (Eq. 8)

�s � �0 � �s0 � Yps0 (Eq. 9)

The parameters
0 and �s0 depend on the quantity of the second
substrate (glucose), which is kept fixed in this study. Therefore,
at the beginning of the experiment, knowing the initial bacterial
volume fraction (�0) and the amount of substrate introduced
initially (s0) can allow the solution of the full set of Equations
1–8. Indeed, each parameter of the set of Equations 1–8 is
defined in Tables 1 and 2. All of the computations and visual-
izations were performed in MATLAB R2007b.

RESULTS

Parameter Identification—To analyze our mathematical
model, we evaluated the numerical values of the parameters of
our model. The parameters are either estimated using data
from the literature or fitted using experimental data. In the
following section,we give details about the specific experiments

FIGURE 3. Interaction graph representing the reaction pathway of the regulatory network of pel-KdgR coupled model of the bacterium D. dadantii,
obtained using the CellDesigner tool.
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that were required to determine some of the parameter values
in the set of Equations 1–5.
Fig. 4 shows, on the same graph, three types of datameasured

from the same experiment, which was performed in conditions
of Pel induction with initial PGA (0.01%w/v) and glucose (0.2%
w/v) inminimal salt mediumM63. The graph shows the exper-
imental data of bacterial growth (A600), Pel enzymatic activity,
and the transcripts of pelD, which is a good representative of
the family of pel genes in the induction conditions studied.
On the same graph a continuous curve fits the Pel activity by
using the simplest differential equationmodel relating the tran-
scripts and the protein data. This model, which can be formu-
lated as follows,

dx1

dt
� am�t� � �1x1 (Eq. 10)

shows that the protein concentration evolves with a produc-
tion term that is proportional to the transcript quantitym(t)
and shows that its degradation is proportional to the protein
concentration. Here the transcripts are measured in arbi-
trary units, so factor a is also arbitrary. The relevant infor-
mation that can be extracted by parameter optimization of
this elementary model is the degradation parameter �1. The
value obtained for this parameter tells us that the half-life of
Pels is 15 h, quantifying the fact that the Pel proteins are
known to be quite stable.
In Fig. 4, the bacterial growth, measured by the variations of

the A600 value, is fitted by means of the Equations 7–10. The
inflection point of the fitting curve defines the transition time
between the exponential and the stationary phases and is found
to be tm � 7.34 h. On the other hand, the point of maximum
production of the transcripts (t � 8.5 h) occurs later than tm.

This proves that induction of the pel gene expression takes
place at the beginning of the stationary phase.
Another parameter appearing in the model equations is the

Michaelis-Menten constant, Km. The weight-characterized
Michaelis-Menten constant, which we denote in the following
by KM � Km�P, where P is the molecular weight of the galactu-
ronate (Table 1), had previously been measured for the five
major Pel isoenzymes (A–E) in standard optimized buffers (30).
Therefore a value of KM � 0.2 g/liter, corresponding to the
mean value of KM among the Pel enzymes (A–E), was initially
used for themodeling. This valuewas found to be inappropriate
because the actual affinity of the Pel enzymes for their substrate
(PGA) is significantly lower in the culture medium (M63 min-
imal medium, pH 7.0) than in the standard buffer assays (Tris-
HCl, pH 8.5) used in Ref. 30. Hence new enzymatic assays were
performed using the M63 culture medium as buffer (see
“Experimental Procedures”). These assays corresponded well
with the classical Michaelis-Menten law, provided the PGA
concentration was not too high. A value ofKM � 1.2 g/liter was
deduced from the half-maximum enzymatic activity, as seen on
the graph shown in Fig. 5. Notice on this graph that theMichae-
lis-Menten law fails to describe the experimental data when the
PGA concentration exceeds 5 g/liter, which indicates that the
enzymes become inhibited when the substrate concentration is
too high. Table 1 gives the list of parameters deduced from
independent experiments and the literature.
Some other parameters could not be experimentally deter-

mined and are considered to be adjustable. The adjustable
parameters are determined by minimizing a quadratic error
function that represents the distance between the normal-
ized experimental and model data sets (see details in
supplemental material). This enables us to obtain a set of
optimal parameters. Table 2 summarizes the list of parame-
ters that have been determined from the optimal fitting by
numerical simulations.
Total Consumption of PGA—In its virulent phase, one of the

main activities of D. dadantii is to degrade the pectin that is
found in the plant cell walls. However, the quantity of pectin
available to a bacterium in planta is difficult to estimate, so to
quantify the amount of substrate degraded by the bacteria,
measurements were performed on samples from a flask con-
taining the M63 medium, which mimics the medium encoun-
tered by D. dadantii in the early steps of infection in the apo-
plasts. Moreover, in this artificial medium, the pectin is
replaced by PGA.
Several experiments were performed to observe the effects of

variation of the PGA concentration on the dynamics of the pel
genes expression and on the production of the enzymes. The
model was used to fit experiments to levels of PGA consump-
tion and Pel synthesis. We considered two experiments carried
out inM63medium, with initial glucose (0.2% w/v) and various
initial concentrations of PGA (0.4 and 0.2% w/v, respectively).
The experimental results showing PGA consumption and Pel
synthesis are shown in Fig. 6. Considering the initial conditions
determined analytically (see the supplemental material) and
corresponding to the equilibrium of the chemical network
(except for PGA, the level of which is increased at the beginning
of the experiment), we could numerically solve the simplified

FIGURE 4. Time course induction of Pel activity (squares) and pelD gene
transcripts (circles) in D. dadantii strain 3937; the growth curve is indi-
cated by black diamonds. Bacteria were grown at 30 °C in liquid M63 mini-
mal medium containing glucose (0.2% w/v) and PGA (0.01% w/v). Samples
containing 109 cells were taken every hour for RNA extraction and for Pel
activity (Pel Act) assays. Pel activity is expressed as �mol of unsaturated prod-
uct liberated per min and per ml of enzymatic extract. Each value represents
the mean of two independent experiments. The bars indicate the standard
deviation. Spline interpolation has been used to turn empirically measured
transcript into a continuous function of time. Note that pelD encodes one of
the five major Pels (Pel A, B, C, D, and E) of D. dadantii; similar results were also
obtained with pelB and pelE genes.
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equations describing our network. An initial experiment
(shown on Fig. 6A) was used to determine the optimal set of
unknown parameters, minimizing the quadratic average error
between the experimental data obtained and our numerical
results (see the supplemental material). Then the acquired
parameters (Table 2) were used to numerically fit all of the
other experiments. As seen in Fig. 6A, the initial amount of
PGA does not much influence the profile of PGA consumption
or Pel synthesis. However, the maximum activity of Pels
depends on this initial amount. As can be seen in Fig. 6B, the
model can reproduce the experimental results with different
amounts of PGA. After �8 h, the amount of free PGA is nearly
completely consumed before the synthesis of Pels begins.
New Addition of PGA—Next, we consider a series of experi-

ments in which additional amounts of PGA are added 24 h after
inoculation of the cultures. At this time the initial PGA is com-
pletely consumed, and the Pel concentration has already passed
its maximum level. Fig. 7 shows the dynamics of three different
experiments in which PGA (0.01, 0.025, and 0.05% w/v) is
added. In this case, it is apparent that themathematics model is
also well adapted for fitting with the corresponding experi-
ments. The addition of PGA after 24 h results in a slight revival
of bacterial growth (not shown) and in the resumption of Pel
activity. As observed in the inset in Fig. 7, the intensity of these

two phenomena, in particular the induction of Pel activity is
proportional to the concentration of added PGA.
Study of Parameter Sensitivity—Biochemical parameters

obtained from the literature or from independent experiments,
such as those listed in Table 1, are usually presented as error-
free point estimates. In fact, these values are often obtained
from indirect measurements, so that they could suffer from
some inaccuracies. Moreover, these values could sometimes
fluctuate from one experiment to another. To test the sensitiv-
ity of themodel predictionswith respect to fluctuations of these
parameters, further simulations have been performed, where
the relative variability on the established parameters could
reach 20% around the value provided in Table 1. The value
taken by any parameter p in Table 1 is randomly chosen in an
interval (pmin, pmax) defined around its mean value given in this
table. Fig. 8 shows the obtained extreme curves between which
all fits are confined when the considered parameters are
changed with a relative variation of 10%. Let us remark that the
upper and lower limits of the “gap curves” correspond, respec-
tively, to either the pmin or the pmax values of varied parameters.
Furthermore, for any random choice of parameters within the
20% variation intervals, it is possible to obtain a choice of
parameters of Table 2 (by applying the same optimization pro-
cedure), which allows a fit of experimental data very close to the
blue curve of Fig. 8.

DISCUSSION

Our quantitative modeling captures the main features of the
time evolution of Pel synthesis byD. dadantii after induction by
PGA. An original feature of our modeling scheme is that the
system is composed of two dynamic compartments. The first
compartment corresponds to the total bacterial volume, and
the second corresponds to the supernatant in the culture
medium. Both parts of the system are equally important
because the pectate lyases mainly carry out their enzymatic
actions on their substrate in the supernatant, whereas the prod-
uct of their degradation is imported into the bacteria. Because
the external volume is much greater than the bacterial volume,
the export and import processes are followed, respectively, by a
significant dilution or concentration of the chemical species
concerned.Moreover, these changes in concentration are time-
dependent, because the bacterial volume increases with time,
evolving via the two classical phases observed for a growth-

TABLE 1
List of parameter values deduced from independent experiments and literature sources

Parameters Description Value Units

�1 Degradation rate of Pel proteina 4.94 � 10�2 h�1

�2 Degradation rate of KdgR proteina 3.47 � 10�2 h�1

�2 Maximum rate of synthesis of KdgRb 7.00 � 10�2 �M�h�1

Km Michaelis-Menten constant for Pel�PGA
complexa

6.8 mM

Kd3 Equilibrium dissociation constant for
KdgR2�KDG2 complexc

0.4 mM

kcat Rate constant of the enzymatic Pel reactions in
purified conditionsd

6 � 104 min�1

a The weight-characterizedMichaelis-Menten constantKM � 1.2 g/liter has beenmeasured in independent experiments as reported in this paper. From this value, one deduces
themolarMichaelis-Menten constantKm �KM/P, where P is themolecular weight of the galacturonate (p� 176 Da) (30). For a theoretical discussion of the relation between
KM and Km, see also supplemental material (Section 3).

b Using the estimate that the number of KdgR2 molecules measured during the growth phase is about 700 molecules/bacteria.
c Approximately 0.4 mM of KDG is required for a dissociation of 50% KdgR operator complexes (16). Let us note that the molecular weight of KDG (C6O6H10) is 178 Da, which
is close to that of the galacturonate residue (176 Da).

d The kcat of the five major Pel enzymes were measured in purified conditions, as reported in Ref. 30.
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FIGURE 5. The standard Michaelis-Menten law fits the Pels enzymatic
activity as a function of the PGA concentration. Assays were performed in
minimal medium M63 buffer as described under “Experimental Procedures.”
Pel activity was normalized to the maximal Pel activity. The value of Km is
classically extracted as the substrate concentration giving half of the maxi-
mum velocity. (Here Km � 1.2 g/liter.) Each value represents the mean of three
independent experiments. The bars indicate the standard deviation.
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limited population, namely the exponential and the stationary
phases. The former is characterized by 
, the exponential
growth rate of the population, and it is observed that this
parameter plays a major role in the onset of virulence factors.
Indeed a prediction of our model obtained by numerical simu-
lations is that the time at which the maximal concentration of
Pels shows up is strictly proportional to the generation time of
bacteria, as illustrated on Fig. 9. Incidently, this figure also
shows that the time of maximization of KDG shares the same
property. As a matter of fact there is a substantial time delay
between the moment of inoculation of bacteria and the time of
maximization of KDG concentration. One can interpret this
delay as resulting from the fact that the feedback loop between
the degradation of PGA allowing the production of KDG
and the subsequent derepression of pel genes is strongly driven
by the growth of the bacteria. In particular, the importation of
UGA is described in Equation 4 by a consumption term that is
proportional to the biomass, allowing an accumulation of UGA
in the supernatant during the early exponential phase. Another
global regulation of the gene expression by the growth phase is
due to the dilution occurring in the cytoplasm during the expo-
nential phase, because the bacterial volume is doubling at each
generation. For example this dilution effect is responsible for a
temporary diminution of the concentration ofKdgR (see Fig. 8),
and this appears to significantly contribute to the derepression
of pel genes. In the absence of this effect, less than half of the Pel
production would occur.
As mentioned earlier we considered two ways of modeling

the PGA degradation. The first option (details in the
supplemental material) was to take into account all the inter-
mediate steps between the longer polymer size (e.g. L � 280)
and the smallest oligomers of unsaturated galacturonates. The
second option was to deal with a minimal model with only one
enzymatic reaction corresponding to the degradations of
dimers into monomers (Equations 3 and 4). The two models
can fit the data with a similar accuracy, by using the same set of
parameters except for the enzymatic reaction rate �kcat. If the
same parameter � � 1 is used for both values of L (L � 2 and
280), an advance of �1.5 h is seen on the consumption of PGA,
as compared with the same initial condition but with long poly-
mers. In fact in the case of L � 2, this time advance can be
compensated by reducing 3-fold the enzymatic reaction rate
(i.e. � � 1/3). Therefore for the presentation and the discussion

of the model, we preferred to adopt the case L � 2, with an
apparent reduced �kcat, but with a gain in simplicity and in
speed of numerical simulations. A compromise would be to
simulate a system with moderate polymer size but still larger
than 2 (e.g. L � 10). In this case there would be practically no
time difference in the degradation time of PGA, and still the
system would keep a low number of variables.
Our model is robust in the sense that a unique set of param-

eters was determined using the data shown in Fig. 6A. Then by
using the sameparameters, the numerics can predict the behav-
ior of the system under different initial conditions, such as in
the cases represented in Figs. 6B and 7. For example, in past
studies of induction experiments of pel genes, the consumption
of the substrate was notmonitored.With our currentmodeling
our previous experimental data can be complemented retro-
spectively with additional variables because the numerical sim-
ulations give access to nonmeasured data, such as the con-
sumption of PGA. It should be noted that the simulations of
substrate consumption slightly overestimate the degradation of
PGA as time evolves. For example, in Fig. 6A the fall of the
continuous curve fitting the measured PGA is steeper than the
experimental data. This observation is systematic for other data
(not shown), and we conclude that there is an unexplored phe-
nomenon, not captured by the present model, that causes a
decrease in the enzymatic activity of Pels when these proteins
accumulate.
The measure of the kinetics of PGA in time has revealed

another striking feature, which is visible in Fig. 6. To explain
this pointwe need to consider the intersection of the two curves
(PGA and Pel activity in time), which occurs at �8.5 h after the
inoculation. At this time, 95% of the initial amount of PGA
added has already been consumed, whereas the production of
Pels has only reached 5% of the maximal level, and it continues
to increase. Thus, at first sight, the behavior of the bacteria does
not seem to be optimal, because a major proportion of the Pel
production is wasted and not used to degrade PGA. On the
contrary, one would expect that in bacteria most enzymatic
productionwould cease as soon as the substrate is absent (e.g. in
the classical example of the lac operon, the production of �-ga-
lactosidase is swiftly repressed when lactose is absent). How-
ever, in this study a massive production of Pels follows the
extinction of the substrate, so the synthesis of Pels appears as an
overproduction compared with the needs of the bacteria pop-

TABLE 2
List of parameters which are optimally determined by numerical simulations

Parameters Description Value Units

� Ratio of the rate constant of the enzymatic Pel
reactions in the culture medium and the
buffera

1 or 1/3

k5 Phosphorylation rate of KDG 150 h�1

�1 Maximum rate of synthesis of Pelsb 30 �M h�1

	 Cell membrane import rate 60 h�1

Kd6 Equilibrium dissociation constant for KdgR2�Pr-
pel complexc

4 � 10�3 �M

a In the simulations � kcat represents the enzymatic reaction rate, and � is let to vary as a free parameter bounded from above by 1. The kcat of the fivemajor Pel enzymes had been
measured, as reported in Ref. 30, giving an average value of 6 � 104 min�1. As mentioned under “Discussion,” the value � � 1 was found to be fairly good when a large set of
polymer degradation reactions was considered (e.g. with maximum polymer length L � 300), whereas � � 1/3 was found to be optimal in the case of L � 2. The latter case
corresponds to a simplified model where the enzymatic degradation occurs in a single reaction step.

b The obtained value of �1 corresponds to a maximal synthesis rate of five proteins/s/cell (with vcell � 1 (�m)3). So if mainly five pel genes are involved in this production, the
maximal production rate corresponds to 1 protein/s/cell.

c In Ref. 16, the values for the dissociation constant for KdgR operator of pel genes were measured and found typically between 10�3 and 10�4 �M.
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ulation, especially because once they are produced, the Pels
remain in the medium for hours (Pels being very stable
proteins).
To explain this paradox it is important to remember that Pels

are virulence factors and that ourmeasurementswere notmade
in the natural environment of the pectinolytic bacteria. Indeed,
these bacteria live in a natural environment that is not closed, so
themassive production of Pelsmay be an evolutionary strategy;
the response of the bacteria could be exaggerated because the
apparently overproduced Pels are meant to diffuse over a large
distance, relative to the emitting bacteria. Thus, the overpro-

duction of Pels could be an “environmentally learned” charac-
teristic of the bacteria. In a sense, this is a form of anticipatory
behavior on the part of the bacteria, which is similar to other
forms of bacterial anticipations recently observed in Esche-
richia coli (31). For example, the teamofTavazoie and co-work-
ers (31) has found “anticipative” behaviors in culture bacteria,
where the anaerobic mode is switched on by raising the tem-

FIGURE 6. Time courses of the catabolism of PGA and the induction of Pel
activity in D. dadantii strain 3937. Bacteria were grown at 30 °C in liquid
M63 minimal medium containing glucose (0.2% w/v) and various quantities
of PGA (0.4% w/v in A and 0.2% w/v in B). 10-ml samples were taken every
hour for PGA quantification and for Pel activity (Pel Act) assays. At each time
point, the remaining PGA concentration was expressed as the percentage of
the initial PGA concentration. The experimental data are represented with
squares (for Pel) and circles (for PGA) and are fitted with continuous curves
(solid lines), computed from the mathematics model using parameters of
Table 1. A, initial amount of PGA (0.4% w/v, 4 g/liter) with N0 � 1.7 � 106

bacteria inoculated corresponding to bacteria fractional volume �0 � 1.7 �
10�3. These data are used to determine the optimal set of unknown param-
eters. In this figure, the Pel synthesis for 2 g/liter amount of PGA is plotted
with a dashed line to observe the effect of changes in the initial PGA amount
on Pel synthesis. B, initial amount of PGA (0.2% w/v) (2 g/liter) with N0 � 7.3 �
107 bacteria inoculated (�0 � 7.3 � 10�2). The mathematics model is used
with the parameters determined to reproduce this experimental data. Each
value represents the mean of two experiments. The bars indicate the stan-
dard deviation. Note that Pel activity is expressed as �mol of unsaturated
product liberated/min/ml of enzymatic extract. Therefore, the numerical data
for Pel activity is given by the expression: Pel Act � kcatx.

FIGURE 7. The impact of added PGA, at the stationary phase of growth, on
Pel production. Three flasks, containing the same volume of M63 minimal
medium supplemented with glucose (0.2% w/v) and PGA (0.01% w/v), were
inoculated with a similar quantity of D. dadantii 3937 (N0 � 4.6 � 108 bacteria
inoculated, i.e. �0 � 4.6 � 10�1) and grown at 30 °C for 24 h. Next, different
quantities of PGA were added to the different growth media (circles, 0.01%
w/v PGA added; triangles, 0.025% w/v PGA added; squares, 0.05% w/v PGA
added). The cultures were then monitored until 50 h. 1-ml samples were
taken every hour for Pel activity (Pel Act) assays. Each value represents the
mean of two independent experiments, and the bars indicate the standard
deviation. The addition of PGA resulted in a slight resumption of bacterial
growth and in a stimulation of Pel activity. The experimental data are fitted
with a dashed line computed from the mathematics model using the param-
eters of Table 1. The dependence of the maximal level of Pel production on
the amount of PGA added is shown in the inset of the figure.
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FIGURE 8. Study of the sensitivity of Pel production dynamics for a 20%
variability around parameters of Table 1. The continuous line represents
the best fit with no variation on parameters. The dashed line and the dotted
line represent, respectively, the lower and the upper boundary for the set of
parameters pmin and pmax obtained with 10% variation of parameters of Table
1 but with no variation of the parameters of Table 2. However, these fits can
be optimized again to curves close to the best fit by a 50% variation on Kd6,
10% variation on k5 and 	, and no variation on �1 and �. The KdgR dynamics is
shown as a dashed-and-dotted line, using the parameters of Table 1. The tem-
porary decrease of KdgR is due to the cytoplasmic dilution entailed by cell
divisions during the exponential phase.
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perature, even if the oxygen level is maximal. Their interpreta-
tion is that when these bacteria enter the mouth, the tempera-
ture is higher, and this is a signal that the oxygen level will soon
fall in the digestive tract. In the same way, it seems that the Pel
regulatory system has evolved similarly so that the pectin com-
pounds are detected as being a strong signal for the presence of
theD. dadantii host, so as soon as a small amount of pectin (or
PGA) is detected by the bacteria in its surroundings, it antici-
pates the arrival of more pectin. A possible test of this hypoth-
esis would be to check whether successive bacterial genera-
tions, cultured in the presence of PGA, gradually lose their
capacity to synthesize a massive amount of Pels in response to
the subsequent addition of pectin to the growth medium.
Another trait that is highlighted by the modeling is the cen-

tral role of KDG inPel dynamics. Incidently, themodel is able to
estimate quantitatively the actual kinetics of KDG (in g/liter)
that would be present in themedium. Such a predictionmay be
useful because this variable has not, so far, been experimentally
quantified. The bacteria can use KDG in two different ways. A
part of these molecules, produced from the degradation of
PGA, can bind to KdgR to derepress the expression of its target
genes, such as the pel genes. The other part of the KDG mole-
cules is catabolized and serves as a source of carbon and free
energy for themetabolism of the bacteria (Fig. 1). As regards its
first function, the binding of KDG to a KdgR dimer can occur
either directly on the free protein or on theKdgR already bound
to the operators of the pel genes. In elaborating the model we
first took this second possibility into account, but it led tomore
complex equations with more unknown parameters, without
improving the data fitting. Therefore we only described the
sequestration of the free KdgR by KDG to keep themodeling as
simple as possible. Regarding its metabolic function, KDG
enters into a catabolic pathway by its phosphorylation via the
enzymatic action of KDGkinase (KdgK) (32). In Equation 6 this
transformation of KDG ismodeled as a first order reactionwith
a constant phosphorylation rate k5. Let us note that this approx-
imation could be improved in a further model because the
kinase KdgK is also regulated by KdgR, so the rate of phosphor-
ylation of KDG could vary in time. In the kdgK mutant, how-

ever, the KDG is no longer catabolized, and the excess can
sequestrate more KdgR repressors by binding to them. In our
mathematical description, the kdgKmutant can be modeled by
drastically reducing the phosphorylation rate of the KDG. In
this case, the model equations could be useful in predicting the
behavior of such a mutant. Fig. 10 shows an example of a
numerical result where k5 compared with the value obtained in
the wild type. In this situation the synthesis of Pels starts earlier
and reaches a higher maximum production than that obtained
with the wild type, because of the accumulation of KDG. Let us
remark that in this case we must consider a numerical simula-
tion with the growth parameters (Equations 9 and 10) corre-
sponding to zero substrate, to take into account the fact that
blocking PGA catabolism results in bacterial growth conditions
with glucose only.
Finally, our modeling can help to predict how the system

would behave in a different experimental setting. For example,
it is possible to describe the stationary states of the system in a
situation where the PGA concentration and the bacterial vol-
ume fraction would no longer be variable but considered as
control parameters. In fact, the situation of a permanent intake
of pectin by the bacteria is somehowmet by these organisms in
the plant, although this intake is fluctuating. In the case of PGA
and bacterial volume being fixed at constant levels, the produc-
tion of Pels reaches a stationary value that can be estimated
from the model by computing the steady states of the system
equations. Fig. 11 shows the behavior of the steady states as a
function of the constant PGA, displaying the phenomenon of
bistability. In this case there exists a range of PGA parameters
where there are two possible stationary states of Pel activity for
the same value of PGA. This has an interesting biological impli-
cation because the property of bistability is an elementary form
of memory (33). Indeed, in the context of our model, this prop-
erty means that if the bacteria have been in contact with a high
amount of substrate and if the available PGA is then reduced,
the bacteria continues to produce a large amount of Pels, com-
pared with a bacteria that has not encountered PGA before.
From the point of view of bacterial virulence, the bistability

FIGURE 9. Variation of the occurrence time of some important events
such as the maximal Pel production time (tPel max), the maximal KDG pro-
duction time (tKDG max), and the time of transition between the exponen-
tial and the stationary phases of bacteria growth (ttransition) as a function
of the generation time of bacteria.

FIGURE 10. Prediction of the Pel dynamics in the kdgK mutant. One con-
siders 0.4% w/v PGA and N0 � 1.7 � 106 inoculated bacteria (�0 � 1.7 � 10�3).
For the wild type strain, k5 � 50 h�1. For the kdgK mutant, k5 � 2.5 � 10�2 h�1

(The phosphorylation rate of KDG in the kdgK strain compared with the wild
type strain has been divided by 2000.) The figure also shows the time evolu-
tion of KDG in the wild type, expressed in g/liter. Pel Act, Pel activity.
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property would be advantageous for the expression of pathoge-
nicity in D. dadantii. Indeed, in this case, assuming that the
bacteria hosted in a plant have produced enoughKDGbypectin
degradation to switch to a massive production of Pels, this
property of an underlying memory would guarantee that if for
some reason after the transition to virulence there is a fall in the
concentration of the available pectin, then the level of virulence
enzyme production by the bacteria can remain high.

CONCLUSION

In summary, we have achieved a first quantitativemodel able
to predict the production of Pels in a population of bacteria
growing in the presence of various amounts of initial PGA. The
model isminimal in the sense that it takes into account only two
essential ingredients of the regulation of pel genes, namely the
positive feedback created by the derepression of KdgR by the
pel inducer KDG and the driving of the kinetic chemical equa-
tions with the growth of the bacterial volume. The model is
robust because it allows the fit of new experimental data with a
set of fixed parameters, nevertheless allowing the latter to be
varied in a range of 20% relative variations. Themodel is useful,
because it allows prediction of the behavior of the Pel regulatory
system in situations that have not yet been experimentally
investigated. Although the fitting of experimental data is rea-
sonably good, the matching between experimental measure-
ments and the numerics remains moderate. It is true that sev-
eral aspects of the regulation of the pel genes have not been
taken into account in our modelization. For example the fluc-
tuations of the known repressors PecT and PecS acting on the
pel promoter modulate the action of the main repressor KdgR.
The role of the protein Fis has also been neglected, although
this regulator represses the pel genes during the exponential
phase (10, 11). Also, other positive regulators are known to
directly impact the production of Pels, like the histone-like pro-
tein H-NS and the global regulator CRP. Furthermore the
expression of pel genes is also affected by physical factors, like
the supercoiling state of the bacterial genome.5 This latter
physical property is regulated by proteins such as Fis and H-NS
but also by the specific proteins Gyr and TopA. Even though in

our model a part of the actions of these factors is implicitly
taken into account by coupling the biochemical kinetics with
the cell growth dynamics, it remains that by choosing not to
describe the dynamics of all the regulatory factors, wemake the
implicit assumption that their variations can be discarded or
that their effects can be incorporated in the (effective) param-
eters. But these suppositions are clearly approximations.
Therefore our simplifying assumptions are responsible for a
part of the discrepancy found between the numerics and the
data. The other part should be sought in the intrinsic stochas-
ticity of biological variables.
Our study takes place in a new vein of systems biology

research, combining genetic regulations with metabolic pro-
cesses in the same model. This first attempt will be further
developed in a future work by incorporating the role of varia-
tion of initial glucose in the model, whereas the latter substrate
was considered as constant in this present work. Another per-
spective that will be developed in the near future will be the
study of regulatory dynamics of Pel synthesis with the help of a
chemostat.
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